A Computationally Intelligent Framework for UAV Forced Landings
نویسندگان
چکیده
A computationally intelligent framework has been developed for the forced landing problem for uninhabited airborne vehicles (UAVs). This framework locates landing areas within an image that are of the appropriate geometrical size and free of obstacles. The surface-type of the candidate landing areas are classified into categories such as grass, trees and water. The classification results are combined with other information such as, the spatial relationships between candidate areas, the presence of moving objects (for example cars and people) and the objects in surrounding the areas, to nominate candidate UAV forced landing sites. A discussion is presented that shows that a type-2 fuzzybased approach is expected to be useful in resolving data-set uncertainties allowing a reliable UAV forced landing site recommendation to be made. Examples of data-set uncertainties include the surface type classification and the models of motion of various objects. Results are presented showing the successful location of appropriate candidate UAV landing sites. A success rate of 90% has been achieved using a neural network classification approach and based on the testing of 500 images. These results are based on actual flight imagery collected from a Cessna 172 flight over Brisbane, Australia.
منابع مشابه
A Vision Based Emergency Forced Landing System for an Autonomous UAV
This paper introduces the forced landing problem for UAVs and presents the machine-vision based approach taken for this research. The forced landing problem, is a new field of research for UAVs and this paper will show the preliminary analysis to date. The results are based on video data collected from a series of flight trials in a Cessna 172. The aim of this research is to locate " safe " lan...
متن کاملQuadrotor UAV Guidence For Ground Moving Target Tracking
The studies in aerial vehicles modeling and control have been increased rapidly recently. In this paper , a coordination of two types of heterogeneous robots , namely unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) is considered. In this paper the UAV plays the role of a virtual leader for the UGVs. The system consists of a vision- based target detection algorithm that uses the ...
متن کاملTowards Autonomous Autorotation Landing for Small Size Unmanned Helicopters
The consideration of safety issues in the operation of helicopters involves the capability to perform emergency descending maneuvers through the autorotation principle when the engine is no longer supplying power. When comparing manned and unmanned helicopters, the lower rotor inertia of UAV configurations makes this functionality even more challenging for the pilot since more accurate timing a...
متن کاملAutomating Human Thought Processes for a UAV Forced Landing
This paper describes the current status of a program to develop an automated forced landing system for a fixed-wing Unmanned Aerial Vehicle (UAV). This automated system seeks to emulate human pilot thought processes when planning for and conducting an engine-off emergency landing. Firstly, a path planning algorithm that extends Dubins curves to 3D space is presented. This planning element is th...
متن کاملControlled Emergency Landing of an Unpowered Unmanned Aerial System
The ability to perform autonomous emergency (forced) landings is one of the key technology enablers identified for UAS. This paper presents the flight test results of forced landings involving a UAS, in a controlled environment, and which was conducted to ascertain the performances of previously developed (and published) path planning and guidance algorithms. These novel 3-D nonlinear algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005